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Motivation

Motivation

Consider the set D8 whose elements are the symmetries of a square.

Two specific symmetries r and s in D8 are described by the diagrams
below:

Figure:
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Motivation

We define a multiplication in the set D8 by the rule: if x and y are
symmetries then xy is the symmetry obtained by first performing y and
then performing x .

For example, the symmetry rs is described by:
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Motivation

The multiplication in D8 we have defined is associative and D8 has an
identity element 1 and inverses. In other words, the set D8 together with
our multiplication is a group.

It is not difficult to see that every symmetry in D8 is equal to a product of
the form r i s j . We say that the group D8 is generated by r and s.

The symmetries r and s satisfy r4 = 1, s2 = 1, and srs = r−1.

It turns out that these equalities (called relations) completely determine
how symmetries multiply together in D8. We thus obtain a presentation
for the group D8:

D8 = 〈r , s|r4 = s2 = 1, srs = r−1〉.
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Motivation

This presentation allows us to define the group “abstractly,” i.e., without
any reference to the original square and its symmetries.

Question

If we begin with the abstract definition of D8 as a group, how can we
recover the square-symmetry interpretation for its elements?

Here’s one way. Begin by noting that a symmetry of the square permutes
its vertices and is uniquely determined by how it permutes the vertices.
We then have a one-to-one map

X : D8 → S4.

(e.g., X (r) = (1 2 3 4) and X (s) = (2 4).) The map X is known as a
permutation representation and is in fact a group homomorphism.
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Motivation

Another way is to use a group action.

Definition

Let G be a group and Ω a set. A group action of G on Ω is a map from
G × Ω to Ω written g · ω for g ∈ G , ω ∈ Ω that satisfies both
g · (h · ω) = gh · ω and 1 · ω = ω for all g , h ∈ G and ω ∈ Ω.

When a group action of G on Ω exists, we say G acts on Ω. For example,
if V is a vector space over the field F then the multiplicative group
F× = F \ {0} acts on V since c · (d · v) = cd · v and 1 · v = v for all
c , d ∈ F and v ∈ V (these are axioms built into the definition of a vector
space).

Another example: any group G acts on itself by left multiplication.
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Motivation

Let X : D8 → S4 be the permutation representation of D8 from before. We
can define a group action of D8 on Ω = {1, 2, 3, 4} by g · ω = X (g)(ω) for
g ∈ D8 and ω ∈ Ω. For example, r · 1 = 2 and s · 2 = 4.

The fact that this defines an actual group action hinges on the fact that X
is a homomorphism:

g · (h · ω) = X (g)(X (h)(ω)) = (X (g) ◦ X (h))(ω) = X (gh)(ω) = gh · ω

and
1 · ω = X (1)(ω) = ω.

We can interpret each element of D8 as a symmetry of the square via this
group action.
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Motivation

We can recover the permutation representation X from the action of D8

on Ω = {1, 2, 3, 4}.

The map from Ω to itself induced by left multiplication by an element
g ∈ D8 has a 2-sided inverse (can you guess what the inverse is?). In other
words this map is a permutation, so we can treat it as an element of S4.

The map X : D8 → S4 defined by X (g) = (ω 7→ g · ω) is a homomorphism
because

X (gh) = (ω 7→ gh · ω) = (ω 7→ g · ω) ◦ (ω 7→ h · ω) = X (g)X (h).

Note that the middle equality above holds by the axiom g · (h · ω) = gh · ω
required for a group action.

The group D8 is not special: in general, a group action determines a
permutation representation and vice versa.
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Motivation

To recap what we have done: we began with a “concrete” group (D8)
with an action “built into” the group itself (the elements of D8 were
symmetries of a square). We then split the concrete group up into two
components: an “abstract” group (D8 defined by generators and relations,
i.e., a set of symbols with multiplication) and a group action/permutation
representation. What is the use of this latter perspective?

Cayley’s Theorem

Every group is isomorphic to a subgroup of a symmetric group.

Sylow’s Theorem

If G is a finite group of order pam where p is a prime and p does not
divide m, then G has a subgroup of order pa.

Both of these theorems are proved using the abstract theory of group
actions.
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Motivation

Recall that the general linear group of degree n over the field F is the
group GLn(F ) of invertible n × n matrices with entries in the field F . If V
is a vector space over F , the group GL(V ) is the group of nonsingular
linear transformations of V .

If we embed the square at the center of a Cartesian coordinate system we
can reinterpret the action of D8 on the square via linear transformations:
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Motivation

In other words, the action of D8 on the square can be thought of as a
homomorphism X : D8 → GL2(R) with

X (r) =

(
0 −1
1 0

)
and X (s) =

(
0 1
1 0

)
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Representations

Representations

Definition

Let F be a field, V a vector space over F , and G a group. An
F-representation of G is a homomorphism X : G → GL(V ).

In case dim(V ) = n <∞ we obtain an isomorphism GL(V ) ∼= GLn(F )
after choosing a basis for V . A homomorphism X : G → GLn(F ) is
sometimes called a matrix representation. The degree of the
representation is n.
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Representations

Just as for permutation representations, we may view a representation
X : G → GL(V ) as a description of an action of G on the vectors in V —
simply define g · v = X (g)(v). The action of G on V satisfies, for all
g , h ∈ G , v ,w ∈ V , and λ ∈ F ,

(1) g · (h · v) = gh · v
(2) 1 · v = v

(3) g · (v + λw) = g · v + λ(g · w).

An action of G on an F -vector space which satisfies all of the above is
called a linear action.

Given a linear action of G on V we may define a representation
X : G → GL(V ) by letting X (g) denote the linear operator v 7→ g · v .
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Representations

Some examples:

We can create a homomorphism from any group G to GL(V ) by
defining X (g) = 1 for all g ∈ G . This representation is called the
trivial representation.

Let e1, e2, . . . , en be a basis for the vector space V over F . Define an
action of Sn on the basis vectors by σ · ei = eσ(i) for σ ∈ Sn.
Extending the action linearly to all of V produces a linear action of Sn
on V and thus a representation X : Sn → GLn(F ).

If G is cyclic of order m with generator g , define X : G → GL1(C) by
X (g i ) = (ξi ) where ξ is a fixed mth root of unity.

Let G be a finite group and let N be a normal subgroup of G .
Assume that N is isomorphic to a direct product of cyclic groups each
of prime order p. Then N is a vector space over Fp. There is a linear
action of G on N induced by conjugation. In other words, conjugation
by elements of G gives a representation X : G → GL(N) ∼= GLn(Fp).
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Representations

There is another way to interpret what a representation is.

Definition

Let F be a field and G a finite group. The group algebra FG is the
F -vector space with basis G and multiplication defined by the linear
extension of the multiplication in G .

For example, a typical element in QS3 may be written

a11 + a2(1 2) + a3(1 3) + a4(2 3) + a5(1 2 3) + a6(1 3 2)

Where all a ∈ Q. An example of multiplication in QS3:

[3(1 2)− 2

3
(1 2 3)] · [−(1 2)] = −3 · 1 +

2

3
(1 3).

J.R. McHugh An Introduction to Character Theory March 21, 2018 16 / 41



Representations

There is another way to interpret what a representation is.

Definition

Let F be a field and G a finite group. The group algebra FG is the
F -vector space with basis G and multiplication defined by the linear
extension of the multiplication in G .

For example, a typical element in QS3 may be written

a11 + a2(1 2) + a3(1 3) + a4(2 3) + a5(1 2 3) + a6(1 3 2)

Where all a ∈ Q. An example of multiplication in QS3:

[3(1 2)− 2

3
(1 2 3)] · [−(1 2)] = −3 · 1 +

2

3
(1 3).

J.R. McHugh An Introduction to Character Theory March 21, 2018 16 / 41



Representations

FG has an identity element: 1F1G .

We identify the elements λ1G for λ ∈ F with the field F . After making
this identification we can say that F ⊆ Z (FG ).
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Representations

Given an F -representation X : G → GL(V ) of a finite group G we make V
into a unital FG -module by defining

(
∑
g∈G

agg) · v =
∑
g∈G

agX (g)(v).

Conversely, if V is a unital FG -module then V is in particular an F -vector
space (since F ⊆ FG ) and restricting the “action” of FG to the basis G
gives a linear action of G on V . Hence we get a representation.
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Representations

We think of a representation in 3 ways:

(1) a homomorphism from a group into the group of nonsingular linear
transformations of a vector space (or the group of nonsingular
matrices)

(2) a linear action of a group on a vector space

(3) a module over a group algebra.

Since these notions all coincide we call each of them a representation.

The third interpretation above provides a new example of a representation:
the regular representation of G is FG considered as an FG -module (this is
sometimes denoted FGFG to emphasize the left FG -module structure).
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Representations

Definition

The F -representations X and Y of the finite group G are equivalent if the
corresponding FG -modules are isomorphic.

Exercise: If X and Y are equivalent F -representations of G , show that
T−1XT = Y for some linear transformation T .

J.R. McHugh An Introduction to Character Theory March 21, 2018 20 / 41



Representations

Definition

The F -representations X and Y of the finite group G are equivalent if the
corresponding FG -modules are isomorphic.

Exercise: If X and Y are equivalent F -representations of G , show that
T−1XT = Y for some linear transformation T .

J.R. McHugh An Introduction to Character Theory March 21, 2018 20 / 41



Representations

Definition

A representation X : G → GL(V ) is irreducible if V is an irreducible
FG -module (that is, the only FG -submodules of V are 0 and V ).

Note that an FG -submodule W ⊆ V is just a subspace that is invariant
under the action of the group elements: for all g ∈ G , g ·W = W .

The “square-symmetry” representation X : D8 → GL2(R) is irreducible:
otherwise, R2 would have an RD8 submodule of R-dimension 1. But lines
in R2 are not left invariant by the “rotation element” r ∈ D8.
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Representations

Definition

A representation X : G → GL(V ) is indecomposable if V is an
indecomposable FG -module (that is, V cannot be written as a direct sum
V = U ⊕W of FG -submodules in a nontrivial way).

Let Z2 = 〈z〉 and define X : Z2 → GL2(F2) by X (z) =

(
1 1
0 1

)
. Then X

is a reducible, indecomposable representation: the subspace span{(1, 0)} is
the only Z2-invariant subspace of F2

2.
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Representations

Maschke’s Theorem

Let G be a finite group and F be a field whose characteristic does not
divide the order of G . Let V be an FG -module and let U be an
FG -submodule of V . Then there exists another FG -submodule W of V
such that V = U ⊕W .

Proof: U is a subspace of the F -vector space V , so V = U ⊕W0 for some
subspace W0.But W0 need not be G -invariant. To fix this, let π0 : V → U
be the projection map with kernel W0 and define π : V → U by

π(v) =
1

|G |
∑
g∈G

gπ0(g−1v).

Since gπ0g
−1 is a linear transformation, π is as well.If h ∈ G then

π(hv) =
1

|G |
∑
g∈G

gπ0(g−1hv) =
1

|G |
∑
g∈G

hh−1gπ0((h−1g)−1v) = hπ(v).

J.R. McHugh An Introduction to Character Theory March 21, 2018 23 / 41



Representations

Maschke’s Theorem

Let G be a finite group and F be a field whose characteristic does not
divide the order of G . Let V be an FG -module and let U be an
FG -submodule of V . Then there exists another FG -submodule W of V
such that V = U ⊕W .

Proof: U is a subspace of the F -vector space V , so V = U ⊕W0 for some
subspace W0.

But W0 need not be G -invariant. To fix this, let π0 : V → U
be the projection map with kernel W0 and define π : V → U by

π(v) =
1

|G |
∑
g∈G

gπ0(g−1v).

Since gπ0g
−1 is a linear transformation, π is as well.If h ∈ G then

π(hv) =
1

|G |
∑
g∈G

gπ0(g−1hv) =
1

|G |
∑
g∈G

hh−1gπ0((h−1g)−1v) = hπ(v).

J.R. McHugh An Introduction to Character Theory March 21, 2018 23 / 41



Representations

Maschke’s Theorem

Let G be a finite group and F be a field whose characteristic does not
divide the order of G . Let V be an FG -module and let U be an
FG -submodule of V . Then there exists another FG -submodule W of V
such that V = U ⊕W .

Proof: U is a subspace of the F -vector space V , so V = U ⊕W0 for some
subspace W0.But W0 need not be G -invariant. To fix this, let π0 : V → U
be the projection map with kernel W0 and define π : V → U by

π(v) =
1

|G |
∑
g∈G

gπ0(g−1v).

Since gπ0g
−1 is a linear transformation, π is as well.If h ∈ G then

π(hv) =
1

|G |
∑
g∈G

gπ0(g−1hv) =
1

|G |
∑
g∈G

hh−1gπ0((h−1g)−1v) = hπ(v).

J.R. McHugh An Introduction to Character Theory March 21, 2018 23 / 41



Representations

Maschke’s Theorem

Let G be a finite group and F be a field whose characteristic does not
divide the order of G . Let V be an FG -module and let U be an
FG -submodule of V . Then there exists another FG -submodule W of V
such that V = U ⊕W .

Proof: U is a subspace of the F -vector space V , so V = U ⊕W0 for some
subspace W0.But W0 need not be G -invariant. To fix this, let π0 : V → U
be the projection map with kernel W0 and define π : V → U by

π(v) =
1

|G |
∑
g∈G

gπ0(g−1v).

Since gπ0g
−1 is a linear transformation, π is as well.

If h ∈ G then

π(hv) =
1

|G |
∑
g∈G

gπ0(g−1hv) =
1

|G |
∑
g∈G

hh−1gπ0((h−1g)−1v) = hπ(v).

J.R. McHugh An Introduction to Character Theory March 21, 2018 23 / 41



Representations

Maschke’s Theorem

Let G be a finite group and F be a field whose characteristic does not
divide the order of G . Let V be an FG -module and let U be an
FG -submodule of V . Then there exists another FG -submodule W of V
such that V = U ⊕W .

Proof: U is a subspace of the F -vector space V , so V = U ⊕W0 for some
subspace W0.But W0 need not be G -invariant. To fix this, let π0 : V → U
be the projection map with kernel W0 and define π : V → U by

π(v) =
1

|G |
∑
g∈G

gπ0(g−1v).

Since gπ0g
−1 is a linear transformation, π is as well.If h ∈ G then

π(hv) =
1

|G |
∑
g∈G

gπ0(g−1hv) =
1

|G |
∑
g∈G

hh−1gπ0((h−1g)−1v) = hπ(v).

J.R. McHugh An Introduction to Character Theory March 21, 2018 23 / 41



Representations

So π is an FG -module homomorphism. Thus W = ker π is an
FG -submodule of V .

If u ∈ U then

π(u) =
1

|G |
∑
g∈G

gπ0(g−1u) =
1

|G |
∑
g∈G

u = u.

It follows that if u ∈ U ∩W then 0 = π(u) = u, i.e., U ∩W = 0.If v ∈ V
then π(v) ∈ U and v − π(v) ∈W since
π(v − π(v)) = π(v)− π(π(v)) = 0. Thus
v = π(v) + (v − π(v)) ∈ U + W and V = U ⊕W .
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Representations

Wedderburn’s Theorem

Let R be a ring with 1 6= 0. The following are equivalent:

(1) Every R-module is injective.

(2) Every R-module is a direct sum of irreducible submodules.

(3) R is isomorphic to a direct product of finitely many matrix rings with
entries in division rings.

Let F be a field whose characteristic does not divide |G |. Then FG
satisfies (1). By (2), to understand all FG -modules, it is enough to
understand the irreducible ones!

The matrix ring Mn(D) over the division ring D has a unique isomorphism
class of irreducible (left) modules. In essence, the only irreducible
Mn(D)-module is Dn. It then follows directly from (3) above that FG has
only finitely many irreducible modules!
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Representations

If we choose our field F to be C then the division rings that appear in
Wedderburn’s Theorem all become C. That is, for G a finite group,

CG ∼= Mn1(C)×Mn2(C)× · · · ×Mnr (C).

and CG has exactly r distinct isomorphism types of irreducible modules
with complex dimensions n1, n2, . . . , nr .

Note that

|G | = dimC(CG ) =
r∑

i=1

dim(Mni (C)) =
r∑

i=1

n2i .

It can be shown that each ni divides |G |.

Also note that dimC(Z (CG )) = r . It is not hard to show that a basis for
Z (CG ) is given by “class sums”

∑
g∈K g where K is a G -conjugacy class.

It follows that r is the number of conjugacy classes of elements of G .
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Representations

If A is an abelian group then A has |A| conjugacy classes. Under the
notation of the previous frame we have r = |A| and this forces each
ni = 1. Thus all irreducible CA-modules have dimension 1.

If G is non-abelian then r < |G |. Thus some ni > 1. We have observed
that a group G is abelian if and only if all irreducible CG -modules have
dimension 1 over C.
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Characters

Characters

We want to get our hands on the irreducible C-representations of G . The
problem is that, while there are only finitely many (up to equivalence),
their degrees can be massive. For example, the monster group M is a
simple group of order

|M| = 808, 017, 424, 794, 512, 875, 886, 459,

904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

(According to Wikipedia, the order of M is approximately 808
sexdecillion.)

The smallest nontrivial irreducible representation of M

(famously) has degree 196, 883. A square matrix of order 196, 883 has
38, 762, 915, 689 entries.
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Characters

Observe that if X : G → GLn(C) is a representation and g ∈ G has order
k , then X (g)k = 1. In other words the minimal polynomial of X (g)
divides xk − 1, hence X (g) is diagonalizable. This suggests studying the
eigenvalues of X (g) for the various elements of G and leads to the
following definition:

Definition

If X : G → GLn(C) is a representation of a finite group G , the character of
G afforded by X is the function χ(g) = trace(X (g)).

So χ(g) is the sum of the eigenvalues of X (g). In particular χ is a
function from G to C. In general, χ is not a group homomorphism.

Note that χ(1) = trace(X (1)) = trace(I ) = n, the degree of the
representation X .
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Characters

Some examples:

The character χ of the trivial representation X : G → GL1(C) is just
the constant function 1 on G : χ(g) = 1 for all g ∈ G . This character
is called the principal character of G .

Let G act on {1, 2, . . . , n} and let V be a C-space with basis
e1, e2, . . . , en. Let G act on the basis vectors by g · ei = eg ·i and
extend the action linearly to all of V . Then V is a CG -module with
associated homomorphism X : G → GL(V ). The matrix X (g) with
respect to the basis e1, e2, . . . , en has a 1 in position i , j if and only if
g · j = i and zeros elsewhere. In particular, there will be a 1 in
position i , i if g · i = i and a 0 otherwise. This shows that, if χ is the
character afforded by X , then

χ(g) = the number of fixed points of g on {1, 2, . . . , n}.

If ρ is the character of the regular representation of G then
ρ(1) = |G | and ρ(g) = 0 for all g 6= 1.
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Characters

We adopt module-theoretic terminology to describe characters. For
example, if the representation X is irreducible we say that the afforded
character χ is irreducible and vice versa.

If Q is an n × n matrix and P is an invertible n × n matrix then

trace(P−1QP) = trace(Q).

It follows immediately that equivalent representations afford the same
character.

Note also that if g , h ∈ G and X is a representation affording the
character χ then

χ(h−1gh) = trace(X (h−1gh)) = trace(X (h)−1X (g)X (h))

= trace(X (g)) = χ(g)

so characters are constant on conjugacy classes.

J.R. McHugh An Introduction to Character Theory March 21, 2018 31 / 41



Characters

We adopt module-theoretic terminology to describe characters. For
example, if the representation X is irreducible we say that the afforded
character χ is irreducible and vice versa.

If Q is an n × n matrix and P is an invertible n × n matrix then

trace(P−1QP) = trace(Q).

It follows immediately that equivalent representations afford the same
character.

Note also that if g , h ∈ G and X is a representation affording the
character χ then

χ(h−1gh) = trace(X (h−1gh)) = trace(X (h)−1X (g)X (h))

= trace(X (g)) = χ(g)

so characters are constant on conjugacy classes.

J.R. McHugh An Introduction to Character Theory March 21, 2018 31 / 41



Characters

We adopt module-theoretic terminology to describe characters. For
example, if the representation X is irreducible we say that the afforded
character χ is irreducible and vice versa.

If Q is an n × n matrix and P is an invertible n × n matrix then

trace(P−1QP) = trace(Q).

It follows immediately that equivalent representations afford the same
character.

Note also that if g , h ∈ G and X is a representation affording the
character χ then

χ(h−1gh) = trace(X (h−1gh)) = trace(X (h)−1X (g)X (h))

= trace(X (g)) = χ(g)

so characters are constant on conjugacy classes.

J.R. McHugh An Introduction to Character Theory March 21, 2018 31 / 41



Characters

If V is a (finite-dimensional) CG -module by Wedderburn’s Theorem we
have

V = U1 ⊕ U2 ⊕ · · · ⊕ Us

for some irreducible submodules Ui of V . Let χ be the character afforded
by V and ψi the character afforded by Ui . Each element g ∈ G then acts
on V as a block-diagonal matrix with blocks corresponding to the modules
Ui . It follows that

χ = ψ1 + ψ2 + · · ·+ ψs .

It is not difficult to show that the irreducible characters of a group G are
linearly independent. It follows that two C-representations are equivalent
if and only if they afford the same character.

This observation reduces the problem of studying equivalence classes of
irreducible representations to the study of irreducible characters.
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This observation reduces the problem of studying equivalence classes of
irreducible representations to the study of irreducible characters.
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Characters

Definition

Let G be a finite group with r conjugacy classes. The character table of G
is an r × r table whose columns are indexed by the conjugacy classes of G ,
whose rows are indexed by the irreducible characters of G , and whose
entry in row (χ,K) is χ(g), g an element of the conjugacy class K.

For example, let Z2 = 〈z〉. We have already observed that Z2 has the
trivial representation and the representation X : Z2 → GL1(C) defined by
X (z) = (−1). These representations are clearly inequivalent and since
|Z2| = 2 these are the only irreducible representations of Z2. The character
table of Z2 is

1 z

χ1 1 1
χ2 1 -1
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Characters

One helpful observation in the determination of the character table of a
group G is that if ρ denotes the character of the regular representation of
G then

ρ =
∑

χ irreducible

χ(1)χ.

This follows from the Wedderburn decomposition of CG .

Let’s see how this can be used by constructing the character table of S3.
The conjugacy classes of S3 are represented by 1, (1 2), and (1 2 3). Thus
S3 has 3 irreducible characters.
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Characters

1 (1 2) (1 2 3)

χ1

χ2

χ3

Any group has the principal character, and the group S3 has the sign
homomorphism which assigns 1 or −1 to a permutation depending on its
cycle type. This can be viewed as a homomorphism from S3 to GL1(C) so
we have
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Characters

1 (1 2) (1 2 3)

χ1 1 1 1
χ2 1 -1 1
χ3

Now the equality ρ = χ1 + χ2 + χ3(1)χ3 allows us to fill in the final row:

6 = ρ(1) = χ1(1) + χ2(1) + χ3(1)2 = 2 + χ3(1)2,

thus χ3(1) = 2.

0 = ρ((1 2)) = χ1((1 2))+χ2((1 2))+χ3(1)χ3((1 2)) = 1+(−1)+2χ3((1 2)),

thus χ3((1 2)) = 0. Similarly, χ3((1 2 3)) = −1.
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Characters

The character table of S3 is

1 (1 2) (1 2 3)

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Let π be the permutation character afforded by the representation of S3
on a vector space of dimension 3 (so S3 permutes the basis vectors around
just as it permutes the numbers 1,2,3 around). We know that π(g) is the
number of fixed points of g on {1, 2, 3}. So π(1) = 3, π((1 2)) = 1, and
π((1 2 3)) = 0. One can see immediately that a decomposition of π is

π = χ1 + χ3.
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Characters

Lots of information about a group G can be obtained by studying the
character table of G . We have already seen, for example, that a group G
is abelian if and only if all of its irreducible character degrees are 1.

Let X be a representation that affords the character χ of G . Since X is a
group homomorphism, ker(X ) is a normal subgroup of G . Now
g ∈ ker(X ) if and only if X (g) is the identity matrix, which holds if and
only if χ(g) = χ(1). Thus

ker(χ) = {g ∈ G : χ(g) = χ(1)}

is a normal subgroup of G . It is not hard to show that every normal
subgroup of G is an intersection of subgroups of the form ker(χ) for χ an
irreducible character of G . It follows that given the character table of a
group G , one can find all normal subgroups of G .

In particular, G is simple if and only if χ(g) = χ(1) implies g = 1 for all
irreducible characters χ of G .
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Characters

The character table of G tells you...

the order of G

the number of conjugacy classes of G

whether or not G is abelian, nilpotent, solvable, or simple

Z (G )

|G : G ′|, the index of the commutator subgroup

information about representations over fields of prime characteristic

The character table of G does not tell you the isomorphism type of G .
The character tables of D8 and Q8 are identical but D8 6∼= Q8.
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Characters

Two of the main tools in constructing a character table are...

The Hermitian inner product (χ, ψ) =
1

|G |
∑

g∈G χ(g)ψ(g−1) for

characters χ and ψ of G . This inner product satisfies (χ, ψ) = δχψ
for irreducible characters χ, ψ of G and allows one to perform fast
decompositions of reducible characters.

Induction: If H ≤ G and V is a CH-module, then CG ⊗CH V is a
CG module. This tool allows one to build characters of groups using
characters of subgroups.
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Characters

Character theory is a wonderful tool for proving theorems about groups.
For example...

Burnside’s paqb Theorem

A group of order paqb where p, q are primes is necessarily solvable.

P. Hall

If for all primes p dividing |G | a Sylow p-subgroup of G has a complement,
then G is solvable.

Frobenius

Let G be a finite group and H be a nontrivial proper subgroup of G such
that H ∩ Hg = 1 for all g ∈ G \ H. Then there exists a normal subgroup
N of G such that NH = G and N ∩ H = 1.
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